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A Log-Log-Normal Model

When continuous data are highly skewed, such as patients’ monthly medical expenditures, log-linear gamma models
are often used to account for the non-normality. A marginal log-linear model for skewed data arising in clusters may
be written as:

Log-Log-Normal MMM:
)l =exp(x;a™)

i ,U,I-CJ- = exp(A,j + z,ja,-)
iii) a; ~MVN(0, D)

iv)  Yijlaj ~ T (uf,v)

Where the gamma distribution is parameterized such that £(Y¢) = u¢ and var(Y°) = (u°)?/v. To estimate a™, we
determine Aj; using the marginalization constraint:

a” = (xjjx,j)*lejlog {/exp(A,-J- + z;a) dFa}
= (xfj-x,j)_lxﬁjlog{exp(A,j+zf-J-Dz/J-/2)}

and thus, A;j = x;ja™ — z,Dz;;/2.
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A Log-Log-Gamma Model

Public health studies frequently involve Poisson processes where counts of incidents in a specified interval are recorded
across multiple visits, locations or both. A mixture of the poisson distributions over a gamma process is often used to
account for extra variability (overdispersion) observed in count data of this type. The resulting marginal distribution
of the mixture is negative-binomial. A log-linear model for such data may be written as:

Log-Log-Gamma MMM:

i) A =exp(x;am)

i) A5 =exp{Q; +log(a;)}
i)y a; ~ (v, k)

iv) Yijla; ~ Poisson(Af))

Where the gamma parameterization produces E(a) = v, var(a) = v?/k. Determining A;; with the marginalization
constraint we have:

a” = (xx;) " x, log [ et +109()} dFa| = (x;x,) " x,log [explas; + og(v)]
a
and thus, A = x;a™ — log(v). Lee & Nelder (1996) recommend constraining E(a) = v = 1, implying that the
coefficient of variation in the gamma random effects distribution is constant, \/var(a)/E(a) = 1/vk. In this case

A,'J' = x,'J-a’””.

The Page Approximation

Solving: xja™ = 2a1A7%° 4 2a; fzig(Afj-"’g‘:")3 yields:

AP = /t(xijam) + u(x;am) = /u(x;am)
where: txija™) = x;am/(2aa;)
' u(xya™) = H{—t(x;am) + /t(x;ja™)?2 —4/(3a,)3}

Further Discussion

Computational techniques in existing software have been proposed for MMMs for an audience of a varied skill set. Career
statisticians familiar with R and SAS can utilize the procedures provided herein to obtain marginal likelihood-based
inference with well known software. Those with less statistical programming expertise can use software of choice to fit
a random intercept model and arrive at a marginal estimate through the appropriate rescaling of estimates (as in the
PPN model) or implementing the approximations as outlined in Section 3.1. Our MMM specifications provide methods
for those with programming backgrounds to utilize existing software for direct estimation, while the approximations
allow simple marginalization from conditional output of standard packages for general users.

Conditional model (GLMM) estimates and interpretations can be heavily dependent on assumed variance structures,
as shown in Heagerty & Zeger (2000). Marginal models estimate effects that are directly observable in the data
and are more robust to the chosen dependence model. This is illustrated by the similarity in the marginal mean
parameter estimates across the range of association assumptions in the crossover trial and visual impairment examples
of Section 4. While alternative approaches to estimating marginal models, such as a GEE approach, avoid specifying
the complete joint distribution of the responses, the MMM approach retains the capability of likelihood inference and
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the consequent benefits therein. The GEE approach precludes the benefits of full likelihood-based analysis of data, such
as weaker restrictions on missing data processes for valid inferences. For instance, if there were missing data in the
visual impairment study which depended on race, the type of missingness would be MAR and would exclude GEE from
modeling choice considerations due to its requirement of missing data to be MCAR (Rubin (1976); Robins, Rotnitzky
& Zhao (1995); Scharfstein, Rotnitzky & Robins (1999)). Weighted GEE (WGEE) is a well-known fix for GEE in
MAR situations, however is difficult to apply with intermittent missingness which poses no additional considerations
for the MMM (Molenberghs & Verbeke (2005)).

Simulation studies as well as published data sets stated to have MAR responses were utilized in comparing the estimates
of MMM to GEE (results available upon request). No appreciable differences were found in the specific instances tested.
In light of the theory pertaining to consistent GEE estimates in MAR situations, the lack of appreciable differences may
be due to the method of artificially inducing MAR in the simulation setting or features of the specific data sets used
as opposed to vetting GEE in all MAR situations. A suitable simulation comparing GEE and MMM in MAR situations
is sought in future work.

The crossover example models were fitted with SAS software, and the visual impairment example models were fitted
with R. In SAS, all models can be fitted with PROC NLMIXED, with the LLN exact method requiring Newton's
method and Gaussian Quadrature coding within the call. In R, LLN and LN models were fitted utilizing R package
1nMLE (Heagerty (1999), Comstock & Heagerty (1999)). The other four models of the visual impairment example
were fitted with a modified gnlmix() R function of the repeated package (Lindsey (2001), see R code file). We
note generally that: (1) it required substantially more quadrature points to obtain stable variance estimates than
are currently used as defaults in existing packages (we used 100 points in the cross-over example); (2) alternative
integration methods are available, such as MCMC, Romberg, etc. but are more computationally demanding. We
used glnmix()'s exact Romberg integration for the visual impairment example and experienced exceedingly lengthy
computational times; and (3) the LLN model requires two levels of integration, for each integral in constructing the
marginal likelihood an additional integral must be performed for constructing the delta function; making it the most
difficult to estimate.

Furthermore, the study design itself may have bearing on the appropriateness of conditional versus marginal
estimates. In the cross-over study, direct observations of outcomes under both treatments are available for estimating
the subject-specific parameters, since the predictor of interest (treatment) varies within a subject; this makes
conditional interpretations more compelling for the cross-over trial example and MMMs straightforwardly provide the
complementary marginal interpretations. In the visual impairment example however, only marginal information across
groups is available on race differences. The data contain no directly observed information for the conditional, subject-
specific question of how outcomes would differ if an individual’s race changed, given the predictor does not vary within
a subject. In this case, mixed-models produce conditional estimates that can be thought of as causal extrapolations.
Though one may be interested in the counterfactual world describing expected outcomes which would have occurred if
a particular person had been of an alternate ethnicity, no directly observed data are available for support. Estimability
of the subject-specific effects here comes via the assumptions placed on the random effects and their distribution. If
the often unverifiable random effects assumptions are incorrect, the conditional estimates can be far from the truth,
as in any extrapolation. MMMs allow the use of mixed model architectures for describing associations within clusters
while providing appropriate marginal estimates for predictors that do not vary within clusters, avoiding this type of
causal extrapolation.

There are a variety of opportunities for further research. Given that MMMs are likelihood based, Bayesian castings could
be investigated by adding prior distributions. Identifying additional conditional structures that produce commonly used
marginal models will extend the availability of the marginalization approach, such as copulas. As further computational
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advances are made in mixed model estimation, the connections shown here allow them to translate to advances in
marginal model estimation as well. Performing sensitivity analyses towards latent variable assumptions will be furthered
by having a wide range of easily implemented random effect distributions, as set forth by Lee & Thompson (2007)
and Nolan (2010). Thus, investigations of alternate latent variable constructions via distributional transformations (as
used in the LLB example) will be beneficial, as such transformations allow the random intercept to be on the same
scale as the conditional coefficients, an issue raised in Lee & Nelder (2004).
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